A Model for Hydro Inflow and Wind Power Capacity for the Brazilian Power Sector

Gilson Matos gilson.g.matos@ibge.gov.br

Cristiano Fernandes

cris@ele.puc-rio.br

PUC-Rio Electrical Engineering Department

GAS Workshop

Tenerife 9 - 11th January 2014

Gilson Matos Cristiano Fernandes

- 2 Univariate GAS Models
- Bivariate GAS Model

Application

- 2 Univariate GAS Models
- 3 Bivariate GAS Model
- 4 Application
- 5 Conclusion

Introduction

Motivation

- In Brazil, the peak of wind power production in the Northeast coincides with the dry season of the hydro system in the Southeast (Seasonal complementarity).
- This complementarity between the hydro and wind power systems can be exploited for optimal power generation planning and energy dispatch.
- In practice this would entail the need of jointly forecasting/simulating time series of wind and hydro flow.

Univariate GAS Models Bivariate GAS Model Application Conclusion

・ロト ・部ト ・ヨト ・ヨト

æ

5 / 53

Univariate GAS Models Bivariate GAS Model Application Conclusion

Figure: Monthly streamflow of Paraibuna river (MG), from 1976 to 2009.

Figure: Boxplots and averages of the monthly streamflow of Paraibuna river.

Univariate GAS Models Bivariate GAS Model Application Conclusion

Figure: Monthly capacity factor of a wind farm in Northeast of Brazil, from 1976 to 2009. Figure: Boxplots and averages of the monthly capacity factor in Northeast of Brazil.

Univariate GAS Models Bivariate GAS Model Application Conclusion

Figure: Streamflow and wind power factor series.

Figure: Scatter plot and regression line.

Image: Image:

Objectives

- To model streamflow and wind power processes, we developed univariate GAS models with predictive gamma and beta densities, respectively.
- GAS structures for the univariate cases: SARIMA and unobserved components.
- Univariate models were used to construct a bivariate GAS model, with marginal gamma and beta distributions.
- The Bivariate GAS model implies negative correlated variables which captures the observed seasonal complementarity between the two series.

Notation

- *y_t*: variable of interest.
- f_t: time-varying vector.
- x_t: vector of exogenous variables.
- θ : vector of static parameters.
- $Y^t = (y_1, y_2, ..., y_t)$, $F^t = (f_0, f_1, ..., f_t)$ and $X^t = (x_1, x_2, ..., x_t)$.
- The available information at t is given by $\{f_t, F_t\}$, where

$$F_t = \{Y^{t-1}, F^{t-1}, X^t\}, \quad t = 1, 2, ..., n.$$

• Assume that y_t is generated by

$$y_t \sim p(y_t/f_t, F_t, \theta)$$

• ∇_t and s_t are the score vector and the weighted score, respectively.

- 2 Univariate GAS Models
- 3 Bivariate GAS Model
- Application
- 5 Conclusion

Gamma Model - SARIMA structure for parameter evolution

- Consider $y_{1t} = \lambda_t u_t$, $u'_t s \sim Gamma(\alpha, \alpha^{-1})$ iid.
- Multiplicative error model (MEM): $f_t = \lambda_t$.
- An appropriate link function is given by:

$$f_t = -\left[\sum_{k=1}^r \phi_k g(x_{t-k+1})\right] + \ln \lambda_t \tag{1}$$

or

$$\lambda_t = \exp\left[f_t + \sum_{k=1}^r \phi_k g(x_{t-k+1})\right]$$
(2)

Gamma Model - SARIMA structure for parameter evolution

$$(y_{1t}/f_t, F_t, \theta) \sim \text{Gamma} (\alpha, \alpha^{-1}\lambda_t), \quad E(y_{1t}/f_t, F_t, \theta) = \lambda_t$$
(3)

$$Var(y_{1t}/f_t, F_t, \theta) = \lambda_t^2/\alpha$$

$$s_t = \alpha^d \left(\frac{y_t}{\lambda_t} - 1 \right), \quad d = 0, 1/2 \text{ or } 1$$
 (4)

$$f_{t+1} = w + \sum_{i=1}^{p} A_i s_{t-i+1} + \sum_{j=1}^{q} B_j f_{t-j+1}$$
(5)

< A > <

>> Seasonality is captured by making A_i and B_j nonzero, for i, j multiples of 12 and in their vicinity.

글▶ 글

Gamma Model - Unobserved component structure for parameter evolution

$$(y_{1t}/f_t, F_t, \theta) \sim Gamma\left(\alpha, \alpha^{-1}\lambda_t\right), \qquad E\left(y_{1t}/f_t, F_t, \theta\right) = \lambda_t \qquad (6)$$
$$Var\left(y_{1t}/f_t, F_t, \theta\right) = \lambda_t^2/\alpha$$

$$s_t = \alpha^d \left(\frac{y_{1t}}{\lambda_t} - 1 \right), \quad d = 0, 1/2 \text{ or } 1$$
 (7)

$$f_{t+1} = w + f_{1,t+1} + f_{2,t+1} + f_{3,t+1} + \sum_{k=1}^{r} \phi_k g(x_{t-k+1})$$
(8)

In this model $\lambda_t = \exp(f_t)$.

The scaled score can be seen as an error component.

Gamma Model - Unobserved component structure for parameter evolution

random walk
$$f_{1,t+1} = f_{1,t} + a_1 s_t$$
 (9)

seasonality
$$f_{2,t+1} = -\sum_{i=1}^{11} f_{2,t+1-i} + a_2 s_t$$
 (10)

autoregressive
$$f_{3,t+1} = \phi f_{3,t} + a_3 s_t$$
 (11)

< 一型

- ₹ 🖬 🕨

æ

15/53

Univariate Gamma Models

Pearson residuals:

$$r_{t/t-1} = s_t \ (d = 1/2)$$
 (12)

• Also, from MEM specification $(y_{1t} = \lambda_t u_t)$, a natural residual is given by:

$$u_t^* = (u_t - 1)$$
 (13)
= $s_t (d = 0)$

< /i>

글⊁ 글

Beta Model - SARIMA structure for parameter evolution

- Wind power capacity is defined in the range [0, k], for $k \le 100$. In the application we adopted k = 70.
- For this series, we considered a beta distribution, with the timevarying parameter given by:

$$\beta_t = \exp\left[f_t + \sum_{k=1}^r \phi_k g(x_{t-k+1})\right]$$
(14)

Beta Model - SARIMA structure for parameter evolution

$$(y_{2t}/f_t, F_t, \theta) \sim Beta(\beta_t, \alpha), \quad E(y_{2t}/f_t, F_t, \theta) = k \frac{\beta_t}{\beta_t + \alpha}$$
(15)

$$Var(y_{2t}/f_t, F_t, \theta) = k^2 \frac{\beta_t \alpha}{(\beta_t + \alpha)^2 (\beta_t + \alpha + 1)}$$

$$s_t = \frac{\ln y_{2t} - [\ln k + \psi_1(\beta_t) - \psi_2(\beta_t + \alpha)]}{\beta_t^{1-2d} [\psi_2(\beta_t) - \psi_2(\beta_t + \alpha)]^{1-d}}, \quad d = 0, 1/2 \text{ or } 1$$
(16)

$$f_{t+1} = w + \sum_{i=1}^p A_i s_{t-i+1} + \sum_{j=1}^q B_j f_{t-j+1}$$
(17)

æ

< /i>

Beta Model - Unobserved component structure for parameter evolution

$$(y_{2t}/f_t, F_t, \theta) \sim Beta(\beta_t, \alpha), \quad E(y_{2t}/f_t, F_t, \theta) = k \frac{\beta_t}{\beta_t + \alpha}$$
(18)

$$Var(y_{2t}/f_t, F_t, \theta) = k^2 \frac{\beta_t \alpha}{(\beta_t + \alpha)^2 (\beta_t + \alpha + 1)}$$

$$s_t = \frac{\ln y_{2t} - [\ln k + \psi_1(\beta_t) - \psi_2(\beta_t + \alpha)]}{\beta_t^{1-2d} [\psi_2(\beta_t) - \psi_2(\beta_t + \alpha)]^{1-d}}, \quad d = 0, 1/2 \text{ or } 1$$
(19)

$$f_{t+1} = w + f_{1,t+1} + f_{2,t+1} + f_{3,t+1} + \sum_{k=1}^r \phi_k g(x_{t-k+1})$$
(20)

Components $f_{1,t}$, $f_{2,t}$ and $f_{3,t}$ are the same as in the gamma model.

< 同 ト < 三 ト

- 2 Univariate GAS Models
- Bivariate GAS Model
- 4 Application

æ

Bivariate Gamma-Beta Distribution

• We considered a modified version of a bivariate distribution proposed by Nadarajah (2009). Let *u* and *v* be gamma variables with:

$$u \sim Gamma(\alpha, \lambda/\alpha), \quad v \sim Gamma(\beta, \lambda/\alpha).$$
 (21)

Now, define y₁ and y₂ as follows:

$$y_1 = u, \quad y_2 = k \frac{v}{u+v} \tag{22}$$

• Thus, y_1 and y_2 have gamma and beta distributions, respectively. The bivariate $Gamma - Beta(\alpha, \beta, \lambda)$ is easily obtained through a change of variables.

$$p(y_1, y_2) = \frac{k y_1^{\alpha+\beta-1} y_2^{\beta-1} (k-y_2)^{-(\beta+1)} \exp\{-k\alpha y_1/[(k-y_1)\lambda]\}}{(\lambda/\alpha)^{\alpha+\beta} \Gamma(\alpha) \Gamma(\beta)}$$
(23)

Bivariate Gamma-Beta Distribution

Moments:

$$E(y_1) = \lambda, \quad V(y_1) = \lambda^2 / \alpha$$
 (24)

$$E(y_2) = k \frac{\beta}{\alpha + \beta}, \quad V(y_2) = k^2 \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$
(25)

$$Corr(y_1, y_2) = -\left(1 + \frac{\alpha + 1}{\beta}\right)^{-\frac{1}{2}}$$
 (26)

イロト イヨト イヨト イヨト

Ξ.

n

Bivariate Gamma-Beta GAS Model

$$(y_{1t}, y_{2t})/f_t, F_t, \theta) \sim Gamma - Beta(\alpha, \beta_t, \lambda_t)$$
(27)
$$s_t = I_{t/t-1}^{d-1} \nabla_t, \quad d = 0, 1/2 \text{ or } 1$$
(28)

$$f_{t+1} = w + \sum_{i=1}^{P} A_i s_{t-i+1} + \sum_{j=1}^{q} B_j f_{t-j+1}$$
(29)

æ

イロト イポト イヨト イヨト

Bivariate Gamma-Beta GAS Model

• The chosen parameterization is given by:

$$(\beta_t, \lambda_t) = \left(\exp\left[f_{1,t} + \sum_{k=1}^{r_1} \phi_{1k} g_1(x_{t-k+1}) \right], \exp\left[f_{2,t} + \sum_{k=1}^{r_2} \phi_{2k} g_2(x_{t-k+1}) \right] \right)'$$
(30)

• Score vector and the Fisher Information matrix to $f_t = (f_{1t}, f_{2t})'$:

$$\nabla_t = \begin{bmatrix} \beta_t \left\{ \ln \left[y_{1t} y_{2t} / (k - y_{2t}) \right] - \ln \lambda_t + \ln \alpha - \psi_1(\beta_t) \right\} \\ k \alpha y_{1t} / \left[(k - y_{2t}) \lambda_t \right] - (\alpha + \beta_t) \end{bmatrix}$$
(31)

$$I_{t/t-1} = \begin{bmatrix} \beta_t^2 \psi_2(\beta_t) & \beta_t \\ \beta_t & (\alpha + \beta_t) \end{bmatrix}$$
(32)

Bivariate Gamma-Beta GAS Model

- Since the conditional moments of each variable are the same of the univariate models, the dependence structure will come from eq.(29).
- To illustrate, a GAS(1,1) model without exogenous variables has updating equation given by:

$$\begin{pmatrix} f_1, t+1 \\ f_2, t+1 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} s_1, t \\ s_2, t \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} f_1, t \\ f_2, t \end{pmatrix}$$
(33)

- 2 Univariate GAS Models
- Bivariate GAS Model

æ

Application

- Motivation: Seasonal stabilization of energy supply in Brazil by exploiting seasonal complementarity between wind and hydro regimes.
- Univariate and <u>Bivariate</u> GAS models.
- Generation of integrated scenarios including consideration of the dispatch from wind farms in energy planning.

Data

- Monthly averages of streamflow and wind power capacity factor from January 1976 to July 2009 (403 observations).
- Last 24 observations were separated to evaluate out-of-sample prediction accuracy.
- Covariates: Natural Affluent Energy (ENA) series of the four power grid subsystems of Brazil (lag r = 2).

Figure: Streamflow and wind power factor series.

Figure: Scatter plot of the series and regression line.

< 一型

Methodology

- Model selection: AIC/BIC.
- Diagnostics: quantile residuals Ljung-Box (LB) and Jarque-Bera (JB).
- Goodness of fit: RMSE, MAE and

$$MASE = \left(\frac{n-1}{n}\right) \frac{\sum_{t=1}^{n} |\hat{y}_{t/t-1} - y_t|}{\sum_{t=2}^{n} |y_t - y_{t-1}|}$$
(34)

$$sMAPE = \frac{1}{n} \sum_{t=1}^{n} \frac{|\hat{y}_{t/t-1} - y_t|}{(\hat{y}_{t/t-1} + y_t)}$$
(35)

pseudo
$$R^2 = \left[corr(\hat{y}_{t/t-1}, y_t) \right]^2$$
 (36)

æ

Forecasting

k-step ahead forecasts, as given by $E(y_{t+k}/f_t, F_t, \theta)$, obtained by Monte Carlo simulation.

イロト イポト イヨト イヨト

Diagnostics using Quantile Residuals

• Diagnostics using quantile residuals (Kalliovirta, 2009), defined by:

$$R_{t,\theta} = \Phi^{-1}(F(y_t/f_t, F_t, \theta))$$
(37)

where $\Phi^{-1}(.)$ is the inverse normal CDF and $F(y_t/f_t, F_t, \theta)$ is the conditional CDF.

- Observed quantile residuals $r_{t,\hat{\theta}}$ obtained by substituting θ for $\hat{\theta}$.
- In the multivariate case, the theoretical quantile residuals are defined from the marginal distributions, ie:

$$R_{t,\theta} = [R_{t1,\theta}, R_{t2,\theta}, ..., R_{tk,\theta}]'$$
(38)

Gamma GAS Models

Univariate Gamma GAS Models

Table: Model selection for univariate Gamma GAS models.

Statistic	SARIMA	UCM
Log-Lik.	-1439,0	-1442,0
AIC	2928,1	2922,0
BIC	3025,7	2996,2

æ

Table: Goodness of fit for univariate Gamma GAS models.

Period	Measures	SARIMA	UCM
	RMSE	16,7	16,5
	MAE	11,6	11,5
In-sample	MASE	0,60	0,60
	sMAPE	7,8	7,7
	pseudo R ²	0,76	0,77
	RMSE	12,9	16,3
	MAE	10,2	12,8
Out-of-sample ⁽¹⁾	MASE	0,53	0,66
	sMAPE	7,9	9,9
	pseudo R ²	0,89	0,75

Note: (1) Predictions k-step ahead obtained by simulation.

イロト イポト イヨト イヨト

Ξ.

Figure: 1-step ahead for streamflow series (SARIMA evolution).

Figure: Random walk, autoregressive and seasonal components for the Gamma GAS model.

< 一型

Table: Diagnostics (p-value) for the Gamma GAS models.

Test	SARIMA	UCM
Autocorrelation (LB)	0,70	0,71
Heteroscedasticity (LB)	0,01	0,04
Normality (JB)	0,12	0,47

æ

<ロ> (日) (日) (日) (日) (日)

Beta GAS Models

Univariate Beta GAS Models

Table: Model selection for univariate Beta GAS models.

Statistic	SARIMA	UCM
Log-lik.	-1074,6	-1050,8
AIC	2191,1	2129,6
BIC	2273,1	2184,3

2

Table: Goodness of fit for univariate Beta GAS models.

Period	Measures	SARIMA	UCM
	RMSE	5,2	4,9
	MAE	4,0	3,6
In-sample	MASE	0,58	0,53
	sMAPE	6,8	6,3
	pseudo R ²	0,86	0,87
	RMSE	7,7	7,9
	MAE	5,8	6,2
Out-of-sample ⁽¹⁾	MASE	0,85	0,90
	sMAPE	12,7	13,2
	pseudo R ²	0,90	0,90

Note: (1) Predictions k-step ahead obtained by simulation.

イロト イポト イヨト イヨト

Ξ.

Figure: 1-step ahead for wind power factor series (UC evolution).

Figure: Random walk, autoregressive and seasonal components for the Beta GAS model.

< 一型

Table: Diagnostics (p-value) for the Beta GAS models.

Test	SARIMA	UCM
Autocorrelation (LB) Heteroscedasticity (LB)	0,54	0,52 0.00
Normality (JB)	0,17	0,01

æ

・ロト ・部ト ・ヨト ・ヨト

Gamma-Beta GAS Model

Bivariate Gamma-Beta GAS Model

• Consider the evolution equation of f_t :

$$f_{t+1} = w + \sum_{i=1}^{p} A_i s_{t-i+1} + \sum_{j=1}^{q} B_j f_{t-j+1}$$

- We tested some structures (AR; diagonal matrices A_i and B_j SUTSE; diagonal matrices A_i and B_j with only B₁ and B₁₂ full);
- Best structure (forecasting/ residual autocorrelation): diagonal matrices and B1 and B12 full.
- The chosen structure allows direct communication between the conditional means, capturing short-term and seasonal dependence.

Table: Model selection by type of model.

	Measures		
Model	Log-Ver.	AIC	BIC
Bivariate Univariate	-2616,1 -2513,6	5326,2 5119,2	5509,8 5298,8

- By univariate model, in this context, we mean the bivariate model assuming independence between streamflow and wind processes.
- In this case, the joint likelihood is obtained multiplying the likelihoods of the univariate models, ie:

$$L(y_1, y_2; \theta, f_0) = L(y_1; \theta_1, f_{10})L(y_1, y_2; \theta_2, f_{20})$$

э

イロト イポト イヨト イヨト

Table: Goodness of fit for bivariate Gamma-Beta GAS models.

Period	Measures	Streamflow	Wind
	RMSE	18,2	5,1
	MAE	12,8	3,9
In-sample	MASE	0,67	0,57
	sMAPE	8,9	6,6
	pseudo R ²	0,72	0,86
Out-of-sample ¹	RMSE	12,9	9,6
	MAE	10,9	7,4
	MASE	0,57	1,08
	sMAPE	8,9	14,9
	pseudo R ²	0,85	0,89

Note: (1) Predictions k-step ahead obtained by simulation.

イロト イポト イヨト イヨト

Ξ.

Table: Diagnostics (p-value) for the bivariate Gamma-Beta GAS model.

Test	Streamflow	UCM
Autocorrelation (LB)	0,11	0,19
Heteroscedasticity (LB)	0,24	0,00
Normality (JB)	0,10	0,66

æ

イロト イポト イヨト イヨト

Figure: 1-step ahead for streamflow and wind power series.

< 一型

Figure: Conditional correlation.

< 17 ▶

글 🕨 🛛 글

Figure: Streamflow - simulated paths and k-step ahead predictions.

A B > A B > A

Figure: Power wind factor series - simulated paths and *k*-step ahead predictions.

- 2 Univariate GAS Models
- 3 Bivariate GAS Model

4 Application

æ

Conclusion

- We specify and estimate a bivariate Gamma-Beta GAS model based on Nadjahara's distribution.
- The bivariate Gamma-Beta GAS model integrated the univariate models (parameterizations and marginal distributions), besides permitting the joint generation of streamflow and wind power factor scenarios.
- Our model compares favorably to a VARX model fitted to the same bivariate series (Amaral, 2011), with the additional feature that no data transformation is necessary.
- Forecasting obtained by simulation and diagnostics based on quantile residuals.
- Recursion initialization (f_t) and maximum likelihood initialization need further thinking.

Bibliography

AMARAL, B. M. Modelos VARX para geração de cenários de vento e vazão aplicados à comercialização de energia. 2011. 155f. Dissertação (Mestrado em Engenharia Elétrica) - PUC-Rio, Rio de Janeiro. 2011.

CREAL, D., KOOPMAN, S. J. and LUCAS, A. Generalized Autoregressive Score Models with Applications. **Journal of Applied Econometrics**, v. 28, n. 5, p. 777 -795, 2013.

KALLIOVIRTA, L. Diagnostic Tests Based on Quantile Residuals for Nonlinear Time Series Models. 2009. 165 f. Thesis (Doctorate in Economics) - University of Helsinki, Helsinki. 2009.

ORD, J. K., KOEHLER, A. B. and SNYDER, R. D. Estimation and prediction for a class of dynamic nonlinear statistical models. Journal of the American Statistical Association, v. 92, n. 440, p. 1621-1629, 1997.

NADARAJAH, S. A bivariate distribution with gamma and beta marginals with application to drought data. **Journal of Applied Statistics**, v. 36, n. 3, p. 277-301, 2009.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >